Показать сообщение отдельно
Старый 13.04.2016, 18:16   #34
RUB's
maestro alluvione
Membro DOC-Russia
 
Аватар для RUB's
 
Регистрация: 21.10.2013
Адрес: Владивосток
Мотоцикл: Тайна SS; эМдура ещё
Сообщений: 13,060
Репутация: 18999
По умолчанию Re: Подскажите, все ли печально?)

Цитата:
Сообщение от Limitchik Посмотреть сообщение
Изменение физико-механических свойств алюминия под действием температуры
Повышение температуры вызывает увеличение электрического сопротивления; для высокочистого алюминия температурный коэффициент электрического сопротивления равен 0,00429 1/град. Изменение величины электрического сопротивления алюминия в функции температуры носит прямолинейный характер.


При понижении температуры ниже 20° С величина электрического сопротивления резко уменьшается. Для алюминиевой проволоки (из алюминия марки АЕ). удельное электрическое сопротивление при —60° С снижается на 20%, т.е. равно 0,25-0,0282 ом мм2/м.
С повышением температуры до 0,4Т (Т — абсолютная температура) у металлов начинается рекристаллизация (процесс образования и роста новых кристаллов).
Температура начала рекристаллизации зависит от степени деформации, чистоты металла и длительности нагрева; чем больше примесей в металле и короче время нагрева, там выше температура рекристаллизации.
При достижении температуры рекристаллизации деформированный металл вследствие образования новых кристаллов полностью теряет свою механическую прочность и восстанавливает пластичность. Для алюминия температура рекристаллизации находится около 120° С. Эта температура относится к сильнодеформированному чистому алюминию. Однако при длительных нагревах рекристаллизация алюминия может наступить и при более низких температурах.
На рис. 2-4 показано изменение механических свойств алюминиевой проволоки из алюминия марки А5 0 5 мм в функции температуры. Проволока испытывалась в холодно-деформированном состоянии.

Изменение механических характеристик алюминиевых шин сечением 40X4 из алюминия марки А 2 в зависимости от температуры (до 350° С) представлено на рис. 2-5. Снижение предела прочности у них отмечается, начиная с температуры 50С, при этом относительное удлинение почти не изменяется.
При сбалчивании алюминиевых шин между со бой в месте соединения при определенном давлении и температуре может наступать ослабление
контакта, последнее обстоятельство может вывести из строя электрическую аппаратуру. На рис. 2-6 представлены кривые сжатия шинного алюминия. Эти кривые показывают предел нагрева, выше которого шина из алюминия начинает подвергаться пластической деформации, что и вызывает нарушение контакта. Таким пределом надо считать температуру 200° С , так как при ней пластическая деформация алюминия начинается при давлениях около 200 кгс/см2, т. е. при удельных давлениях, соответствующих обычно принятым для алюминиевого контакта.
Рассматривая влияние повышенных температур на изменение свойств проводникового алюминия, следует принимать во внимание токовые нагревы, так как при эксплуатации наблюдается потеря прочности алюминиевых проводов, шин и других изделий, вызванная токовыми нагревами.
Проведение испытаний при высоких токовых нагрузках приводит к полному разупрочнению проводов из алюминия со значительной степенью холодной деформации, причем это разупрочнение наступает очень быстро. Проволока из алюминия (марки А5) 99%-ной холодной деформации полностью разупрочнилась в течение всего лишь 0,6 сек при температуре 440° С. Потеря прочности (начало рекристаллизации) у сильно деформированной алюминиевой проволоки при очень кратковременных (0,1, 0,3, 1,0 и 10 сек) действиях тока короткого замыкания лежит в интервале температур 160—180° С. При выдержке в течение 1000 ч при температуре 80° С у алюминиевой проволоки значительно снизились прочностные свойства: предел прочности понизился с 20 до 15 кгс/мм 2 .
С понижением температуры у всех металлов, в частности у алюминия, прочность на разрыв возрастает, удлинение снижается.
При охлаждении от +20 до —60° С у алюминиевой проволоки (03 мм) предел прочности возрос на 10,5%, при этом относительное удлинение снизилось на 13% первоначального значения. После продолжительной (50 суток) выдержки алюминиевой проволоки при температуре —60° С не наблюдалось изменения предела прочности, измеренного при комнатной температуре.

Вот не хотел быть занудой. Продолжим?
Цитата:
Сообщение от Limitchik Посмотреть сообщение
Ознакомился со статейкой)))
Садись 5+!
Основная идея изменение свойств материала под воздействием температуры на примере алюминиевых проводов (не самый хуевый пример!). Материал который ты по недопониманию (незнанию) называешь "дюралькой" полное гавно по сравнению с алюминиевым проводом! Последствия еще печальнее(((

Добавлено через 7 минут
Вот еще коли такой любознательный!

Кристаллическая структура металла шва определяет его механические свойства. Чистый алюминий при кристаллизации обладает способностью образовывать в металле швов грубую крупнокристаллическую структуру.
При сварке алюминиевых сплавов кристаллическая структура и механические свойства металла швов могут изменяться в зависимости от состава сплава, используемого присадочного металла, способов и режимов сварки. Для всех способов сварки характерно наличие больших скоростей охлаждения и направленного отвода тепла. При кристаллизации в этих условиях часто развивается дендритная ликвация, что приводит к появлению в структуре металла эвтектики. Эвтектика снижает пластичность и прочность металла. В связи с этим в швах возможно возникновение кристаллизационных трещин в процессе кристаллизации. Улучшение кристаллической структуры металла швов при сварке алюминия и некоторых его сплавов может быть достигнуто модифицированием в процессе сварки. Поэтому в качестве присадочного металла при сварке все большее применение находят специальные проволоки с добавками модификаторов. Введение этих элементов в небольших количествах позволяет улучшить кристаллическую структуру металла швов и снизить их склонность к трещинообразованию. Перемешивание металла сварочной ванны в процессе сварки с помощью внешнего магнитного поля также снижает склонность металла швов к трещинообразованию.
Свойства сварных соединений зависят также от процессов, протекающих в околошовных зонах. При сварке чистого алюминия и сплавов, неупрочняемых термической обработкой, в зоне теплового воздействия наблюдается рост зерна и некоторое их разупрочнение, вызванное снятием нагартовки. Рост зерна и разупрочнение нагартованного металла при сварке изменяется в зависимости от способа сварки, режимов и степени предшествовавшей нагартовки сплава. Свариваемость сплавов А1-Мg осложняется их повышенной чувствительностью к нагреву и склонностью к образованию пористости и вспучиванию в участках основного металла, непосредственно примыкающих к шву. Способность этих сплавов образовывать пористость в зонах термического воздействия связывается с наличием в слитках молекулярного водорода. После обработки таких слитков (прессования или прокатки) в металле образуются несплошности в виде каналов или коллекторов, в которых водород находится под высоким давлением. Для проверки качества металла, предназначенного для сварки, рекомендуется проводить специальную пробу.
При сварке сплавов, упрочняемых термической обработкой, в околошовной зоне происходят изменения, ухудшающие свойства свариваемого металла. Измерение твёрдости и изучение структуры металла в зоне термического воздействия сплавов этой группы позволяют обнаружить в ней участки металла с различной степенью распада твёрдого раствора и коагуляции упрочнителя. Однако самым опасным изменением, резко ухудшающим свойства металла и способствующим образованию трещин,является оплавление границ зёрен. Появление жидких прослоек между зёрнами снижает механические свойства металла в нагретом состоянии и способствует образованию кристаллизационных трещин.
Независимо от способа сварки и исходного состояния металла в непосредственной близости от шва наблюдается зона оплавления границ зёрен. Ширина этой зоны меняется в зависимости от способа и режимов сварки. Наиболее широкая зона появляется при газовой сварке и более узкая - при способах сварки с жёстким термическим воздействием (дуговой). Распределение эвтектики в этой зоне изменяется в зависимости от исходного состояния сплава. В сварных соединениях, полученных при сварке закаленного сплава, эвтектика располагается в виде сплошной прослойки вокруг зёрен, в то время как в соединениях из отожжённого металла в залегании эвтектики появляются несплошности. Последующей термической обработкой не удается восстановить свойства металла в зоне, прилежащей к шву, что приводит к большому изменению прочности соединений и делает ненадежными эти соединения в эксплуатации.
Ознакомился. Дяденьки, а где здесь в настоящих сварщиков записывают? Подскажите, пожалуйста! Ну, что бы случайно не записаться
__________________
32™
RUB's вне форума   Ответить с цитированием
3 пользователя(ей) сказали cпасибо:
Leha (13.04.2016), OrcaSha (13.04.2016), run (13.04.2016)